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1 Summary

A non-ideal gas model has been developed and retro-fitted into the MSES viscous/inviscid multi-
element airfoil program. The specific applications targeted are compressible airfoil flows in wind
tunnels employing heavy gases. The particular gas modeled in this work has been sulfur hexafluoride
(S5 Fs), although most heavy gases could be implemented if adequate state and caloric data were
available.

Numerical predictions with MSES indicate that the non-ideality of §F; significantly influences
airfoil behavior in transonic flows, especially at the higher total pressures envisioned for pressurized
tunnels. The dominant effect is that for a given freestream Mach number, local Mach numbers
in supersonic zones are lower, and shocks are correspondingly weakened. Another (but apparently
smaller) effect is that for a given edge Mach number, a boundary layer in a heavy gas is theoretically
somewhat more resistant to an adverse pressure gradient due to reduced adiabatic heating near the

wall.
As pointed out by Wagner and Schmidt [1], transonic small-disturbance theory is valid for
non-ideal gases. Similarity between two flows can be obtained if the transonic similarity parameter
2
K = GG
is matched, and if the pressure coefficients are scaled by the factor
2
1-M?
so that the quantity ACy, must also be matched between the two flows. The parameters K and A

A = (y'+1)

above are defined in terms of an “equivalent” ratio of specific heats 4, which is derived in Appendix
B for the second-order small-disturbance formulation employed in MSES.

Although similarity between ideal and non-ideal inviscid transonic flows is rigorous in the con-
text of transonic small-disturbance theory, a similarity rule cannot be formulated for viscous tran-
sonic flows. In addition to the Reynolds number Re, Appendix C shows that an additional pa-
rameter 7, is introduced. This depends on the gas properties and local Mach number, and scales
the effect of the local Mach number on the displacement thickness. It therefore affects viscous
displacement effects and boundary layer response to pressure gradients in compressible flows. It is
highly unlikely that the parameters M, v/, Re, and 7, can all be combined into one similarity rule
for viscous transonic flows. Fortunately, numerical experiments indicate that matching K, ACy,
and Re (or M*, Cr, and Re) still gives good correspondence between air and heavy-gas flows.
Apparently, the effect of v, is not nearly as significant as the other three parameters.

Figure 1 compares C, vs z/c curves for the RAE 2822 airfoil [2] at M = 0.735 for air, for §Fg
at 1 atm, and for SFs at 3 atm. Figure 2 makes the comparison at a fixed M* = 0.765 instead
of a fixed M. Figure 3 in turn makes the comparison at a fixed K and AC} (corresponding to
M =0.735 and C = 0.743 for air). Clearly, matching M* or K is more appropriate for evaluating
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Figure 1: C, distributions for RAE 2822 airfoil at M = 0.735 for air, SFs (1 atm), and SFs (3
atm). Cp = 0.743, Re = 6.2 million.

transonic flow characteristics. To illustrate further, drag-divergence behavior for air, S Fj (1 atm),
and SFg (3 atm) is shown versus M and M* in Figures 4 and 5. As expected from the Cp
comparisons, the effects of the type of gas on transonic drag rise are much smaller if M* is used as
the compressibility parameter in lieu of M. The Mach sweep results were not performed at fixed
K and ACy, since it is not clear how to scale the profile drag coefficient Cp over this sweep. In
principle, the pressure drag should be scaled by A, while the friction drag should perhaps be left
unscaled. However, it is impossible to separate these drag components in an experiment, since only

the total drag is obtained from a wake survey.

For high-lift configurations, small-disturbance theory is obviously invalid, but numerical studies
indicate that matching K and ACL (or alternatively matching M* and Cp) still gives a reasonably
good match between air and heavy-gas flows. Figure 6 shows the inviscid C, distributions over a
slatted two-element airfoil described in reference [3]. A freestream Mach number of M = 0.30 in
air produces a fairly strong shock on the slat and a somewhat weaker shock on the main element.
Figure 7 compares the C, distributions on the slat for the three gas cases at a fixed sonic Mach
number M* = 0.3257 (corresponding to M = 0.30 for air) and C, = 2.85. The comparison is quite
reasonable. It should be stressed again that simply matching the usual freestream Mach number
M =V, /a, and unscaled Cy, gives a very poor match in all cases, except of course in effectively

incompressible flows where any gas non-ideality is irrelevant.
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Figure 2: C, distributions for RAE 2822 airfoil at M* = 0.765 for air, SFg (1 atm), and SFs (3
atm). Cr = 0.743, Re = 6.2 million.
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Figure 3: C, distributions for RAE 2822 airfoil at K = 0.3867 for air, SFs (1 atm), and SFs (3
atm). ACp = 2.095, Re = 6.2 million.
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Figure 4: RAE 2822 drag-divergence behavior versus M for air, SFs (1 atm), and SFs (3 atm).

Cr = 0.743, Re = 6.2 million.
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Figure 5: RAE 2822 drag-divergence behavior versus M* for air, SFs (1 atm), and SFg (3 atm).
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Figure 6: C}, distributions for slatted airfoil in air.
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Figure 7: C, distributions over slat at M* = 0.3257 and C = 2.85 for air, S$Fp (1 atm), and SFg
(3 atm).



The bulk of the heavy-gas model development and application to transonic, inviscid flows is
documented in the SM Thesis of Marc Schafer, which is attached as Appendix A. As mentioned
previously, Appendix B derives the farfield behavior of a non-ideal airfoil low. This was required
for implementation of new outer boundary conditions for the MSES code. Appendix C derives
the shape parameter compressibility correction for an adiabatic boundary layer in non-ideal flow.
This was required to implement new heavy-gas correlations for the MSES integral boundary layer

formulation.
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Chapter 1

Introduction

In the past few decades, the design and development of large transport aircraft has
relied on wind tunnel data taken at significantly lower Reynolds numbers than those
found in operation. The drawbacks of this subscale data become apparent when one
considers phenomena such as attachment line transition or similar aspects of boundary

layer behavior at high Reynolds numbers.

The need for accurate wind tunnel data clearly mandates the construction of a
suitable high Reynolds number test facility. However, the cost of building a large at-
mospheric tunnel and large tunnel models is prohibitive. Higher Reynolds numbers are
often achieved by pressurizing tunnels to effectively increase the density of the air. This

alternative is practical only up to a point.

A potential solution following the same basic idea relies upon the use of gases with
significantly higher molecular weights than air. Candidate gases include Freon-12 or
Sulfur Hexaflouride (SFg), but the use of non-breathable gases clearly causes some
problems. These problems will likely be insignificant to the cost and operational ad-
vantages of such a facility. Combining heavy gases with pressurization would allow test

Reynolds numbers comparable to those on large transports in flight [1].

One complication is that Freon and S Fs have significantly different thermodynamic
properties than air, especially at elevated pressures. Heavy gases do not follow the ideal
equation of state P = pRT nearly as well as air does, nor do they maintain a constant
ratio of specific heats ¥ = ¢,/c, over any significant temperature range. The following
discussion will attempt to quantify the potential importance of these effects through a

computational study.



Chapter 2
Real Gases

The thermodynamic relations specifically sub ject to real gas effects are the state equa-
tion
p = pRT (2.1)
and the caloric equation,
ho= /c, dT = ¢,T (2.2)

these particular forms only being valid for a perfect gas. Real gas effects may be divided

into two categories:

1. Calorically imperfect gases for which ¢p depends on temperature, but which still

satisfy equation (2.1).

2. Non-ideal gases for which cp depends on both pressure and temperature, and

equation (2.1) no longer holds.

The first effect results from the introduction of multiple vibrational modes for poly-
atomic molecules which become more important at higher temperatures. The second
effect depends on intermolecular forces which become stronger as a gas moves towards

liquefaction, ie. higher pressures and lower temperatures.

2.1 Calorically Imperfect Gases

The only difference between a perfect and an imperfect gas stems from the dependence
of ¢, on temperature in the imperfect case. A cursory examination of experimental data

for SFg shows that, in the range of temperatures likely to be found in a wind tunnel

11



test, this dependence is linear in temperature.

cp(T) = a+bT (2.3)
Therefore, equation (2.2) becomes
bT?
h(T) = aT + <> (2.4)

2.2 Non-Ideal Gases

The state equation for a perfect gas (2.1) derives from a kinetic model of gas molecules
which assumes that the molecules are point masses and that they do not exert any forces
on one another except instantaneously during collisions. Clearly these assumptions
become less accurate as the molecular weight of the gas increases. Van der Waals’s
equation

(P + pza) (1-pB) = pRT (2.6)

contains two correction to equation (2.1): @ corrects the pressure to account for inter-

molecular attraction, and 3 corrects for the volume of the molecules themselves.

Using a non-ideal state equation like Van der Waals’s causes many serious compli-
cations as enthalpy, ¢,, 7, etc. now depend on pressure as well as temperature. Despite
these complications, enthalpy and entropy must remain state variables regardless of the
form of the state equation. That is, local entropy and enthalpy must depend only on
the local pressure and temperature and not on the upstream conditions (ie. the gas

history).

Liepmann and Reshko [2] equate this condition with the requirement that a canonical

equation of state must have one of these four forms:

e = e(s,p) (2.7)

12
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h = h(s,p) (2.8)
f = f(r,p) (2.9)
g = g(1,p) (2.10)

Here ¢ = h — p/p is the usual internal energy, f = e — Ts is the free energy, and
g = h — Ts is the free enthalpy.

For a conventional flow solver, the enthalpy defintion (2.8) appears best; however,
specifying the state in this specific form is not convenient because the entropy s is not

readily available to the flow solver. Liepmann and Roshko propose a more suitable form

_pé’T = Z(p,1) (2.11)

which requires T(p, h) to have a form which makes k a state variable.

For a Van der Waals’s gas

1 ap
1-8p RT

(2.12)

which clearly approaches the ideal state equation for a,8 — 0. For typically small

values of @ and 3

Z:l+p<ﬂ—%):l+%(ﬁ—%) (2.13)

where the second approximation is made to make Z = Z (P, T) explicitly. Liepmann and
Roshko write equation (2.13) in more general form as
T,

Z=1+ iqs(;) (2.14)
with p. and T, being the critical pressure and temperature of the gas, and ¢ evidently
being a universal function which they tabulate for gases other than air but with ap-
proximately the same molecular weight. For heavier gases such as SFg it is best to fit a
curve to experimental data as explained in Appendix A. For S Fy, a good curve fit takes
the form

03 =a (F) +a(%)+e (2.15)
It is now necessary to determine the specific heat capacity ¢;(p, T) so that the enthalpy

function A(p,T) can be obtained. Liepmann and Roshko combine two forms of the

13



equation of state A(p,r) and s(p, T) into the fundamental reciprocity relation between

h(p,T) and p(p,T)
oh 1 3(1/p)

5; = ; - T T (2.16)
which is valid for any gas. Combining this with the state equation (2.11) gives
oh RT? (82 RT. ,(/T.\ _
oA (ET), = 2= (?) = F(r) (2.17)

Since 8h/0p = F(1) only depends on the temperature, both A and ¢p must be linear in

the pressure as follows.

h(p,T) = / &(1)dT + pF() (2.18)
wlpT) = o (2.19)
= &) + p3 (2:20)
= &(1) - Rfc;—{ ¢ (T;) (2.21)

As in the case of the calorically imperfect gas, ¢(T) has the form
&(T) = a+bT (2.22)

Substituting this into the enthalpy equation gives

bT? RT. , T.
h(p, T) = aT + —2— + p—p—-‘ﬁ'(?) (2.23)

It is also possible to determine the caloric equation by expressing the internal energy
(e) as e(p,T) [3].

14
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Chapter 3

Solving the Euler Equations

These gas models may be readily integrated into an existing flow solver which solves

the integral form of the steady Euler equations:

fpa-fsz =0 (3.1)
}{(pa-f;a+m)dA -0 (3.2)
ho=h + g = constant (3.3)

These equations are exact for any fluid flow, but must be supplied with a state equation
to relate the pressure p to the enthalpy 4 and the density p. In addition, the upwinding
scheme used to capture the shocks requires the local Mach number while the boundary

conditions and evaluation of shock losses require the local stagnation conditions.

It is desirable to nondimensionalize the equations, and the following scheme is used

where () denotes the dimensional quantitiy and (),.; denotes a reference quantity:

P = P/Pret
P = p/pre
T = T/T«
h = hPt
Pref
Furthermore, ¢,, c,, and R are nondimensionalized using R resulting in several new

nondimensional parameters.

a = a/R
_ b
A = 2a
T = P/P.
T = Tre/T.
15
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For the results presented here, the reference conditions are chosen to be stagnation

conditions.

3.1 Calorically Imperfect Gas

The nondimensional form of the caloric equation which governs the behavior of the

imperfect gas is:

h(T)

/ ¢pdT (3.4)
= aT + afT? (3.5)

which may be inverted to give T as a function of .
- 1+ 48h
T(h) = —L* V11 4Bh/a (3.6)
23
With T obtained from A, p may be determined using the ideal gas law (2.1) and a
specified value of p. The local Mach number comes from the familiar defintion of the

speed of sound:

dp
: _ 99 _ .
a = 3, 1T (3.7)

The local value of ¥ may be found from equation (2.3).

_ % _ _a+2afT
1= &6 l-a-2a8T (3.8)

The last remaining difficulty is the determination of the isentropic relations between
pressure, density, and temperature. These relations are necessary to calculate stagnation

conditions from flow conditions. The familiar perfect gas relations

- . 1
I _ (1+—"‘1M=) 1 LA (1) P _ (l)
To 2 Po To Do T,
do not hold for a calorically imperfect gas.
The proper forms are obtained from the formal statement,
dh = Tds + dr (3.9)

P

16



and for an isentropic process ds = 0:

dh = "7” (3.10)

From the definition of enthalpy dh = ¢p dT, and for an ideal gas p/p = T, so equation

(3.10) becomes
cp(T)dT dp

T = ; (3.11)
Integrating this equation gives
Po _
5 = exp(~alog T + 2a4(1 - T)) (3.12)
and the isentropic density relation then follows directly from the state equation.
P _ P T(h)
—_= = 3.13
Po po T(h) (3.13)

Strictly speaking, solution of the Euler equations requires nothing else. However, if
a Newton-Raphson technique is used, all of the Decessary equations must be linearized
for the Jacobian matrix. In the case of the calorically imperfect gas, the equations
are slightly more complicated than for a perfect gas, but they may still all be written
explicitly. Therefore the linearizations are easily done by differentiating the relevant

equations.

3.2 Non-Ideal Gas

The nondimensional equations describing the non-ideal gas are the state equation

£ _ 1+ rré(cy) (3.14)
T Zy
and the caloric equation.
A(p7) = [oT + apT? + P2 ()| 5 (3.15)
? T T™T Zo

Zo is another parameter which may be described in terms of x and 7.

Zo=P _1, pox¢(%) (3.16)

poTo

17
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The non-ideal gas presents some difficulty as the enthalpy depends on the temper-
ature and the pressure. Therefore, from equations (3.14) and (3.15), pand T may be

found using a Newton-Raphson system to drive the following residuals to zero.

1+ >
Ri(pT) = ;1;—, - —;'Z’?(l) (3.17)
s 171
Rz(p,T) = h - {QT+QﬁT2+P;¢(;)} Z—o (318)

The local Mach number depends on the speed of sound which must be found from
the definition:

a‘ = = 3.19
dpl, (3.19)
This is calculated as follows:
dp dp
dp = —=| d = dh .
D 8p,,p+0h, (3.20)
but dh = dp/p for an isentropic process, and hence
o = 22 _ 35“'"1 (3.21)
ap s 1 - gE Ip ;

The local v really has no meaning and need not be calculated.

The extra complexity of the non-ideal gas appears in the calculation of the sensitiv-
ities. Since p and T are found by an iterative process they must be found by perturbing
the Jacobian matrix of the converged Newton-Raphson system. A perturbation in h
and p is related to a perturbation in p and T by the condition that the R(p, T, h, p) must

remain zero.

B, woplfal [2w]fe
=0 = + (3.22)
i ® %ol gl
Numerically inverting this system gives the required derivatives.

L) éh
PL_| & % (3.23)
6T %% %E ép
The second derivatives are found in a similar fashion starting instead with Qﬁﬂ and Qﬁ-
as the residuals. Using a subscript notation for the derivatives (gﬁ = pp):

§R 8R= A 9Ry, §h 8RRy, GR'. §
1A =0 = o + » L Pa (324)

§Ran o || 4p G 2 | | 6T,

18
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A similar system with R,, and R,, as residuals is also formed. As above, numerically
inverting gives g,’;g = ?ﬁ\, 58,35 = 9}}, etc. These manipulations are implemented in
the source code in Appendix B.

The last remaining task is calculation of the stagnation conditions and, again, it
is not possible to find an analytic expression. Another Newton-Raphson system is

constructed where the first residual comes from equation(3.15):
Ry = ho - h(p,T) (3.25)

The second residual is derived by rearranging equation(3.9)

dh dp

ds = T + T (3.26)
2 d(pF) dp
= —dT + —/—— - = 3.27
T 7 » (3.27)
_ % L _9
= TdT + d(mrr¢) rd(pg) > (3.28)
Integrating gives:
- 1
(p) = [Bdr + pr[ Lo~ 9] - inio) (3.29)
The second residual may then be formed
R; = s - s(p, T) (3.30)

where s, is the entropy of the static conditions.

Driving these two residuals to zero gives the stagnation conditions py, T5. The
derivatives %, %, etc, needed for the Newton-Raphson solver may then be found by
perturbing the converged Jacobian matrix and relating the resulting derivatives to the
static conditions through the chain rule and equations (3.15) and (3.29). This process

is identical to the one used above to find pand T and their derivatives.

19



Chapter 4
Results

After developing the models for the calorically imperfect and non-ideal gases, the next
step was to evaluate the differences these changes caused in inviscid flows. The primary
quantities of interest are the location of shocks and their strength which is defined as the
ratio of of stagnation pressures across the shock. For a perfect gas, the shock strength

may be expressed as a function of the upstream Mach number M.

2 -1/(-1) 2 17/(-1)
Poz _ [1+——7 (Mf—l)] -—-——(7+1)¥1 (4.1)
Po1 T+1 (y-1)M2+2

However, for the non-ideal gas, this relation must be calculated numerically.

1.000
—— Perfect
SRR ———Po= latm
- T Po= 3atm
- .~ ~\\\
.\:\\
-‘~ \\
. -
0.950+ RSN
~‘.‘ \\\
Strength ~
. >~
. ~
- N
~
~
~
. AN
. N
0.900- "
~ N
N
N
N
N
o
0.850 T T T T T Y Y
1.200 1.300 1.400 1.500 1.600

Figure 4.1: Stagnation Pressure Ratio(Strength) vs. Upstream Mach No. for Air and
SFs at latm and 3atm
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Figure 4.2: One dimensional Duct Flow

4.1 One Dimensional Duct Flow

The first comparison of the different gas models was a study of the flow in a converg-
ing/diverging nozzle using a quasi one dimensjonal Euler solver. This flow is character-
ized by sonic flow at the throat with a shock downstream to match the specified exit

pressure as shown in figure(4.2).

As a basis for comparison of the different gas models in a duct flow, the non-
dimensional reference enthalpy (hopo/po) was made equal for all three cases.

_ 7

ho = 71 (4.2)

= afl +8) (4.3)

- ol+8)+xé(d) (4.4)
VA

With hg held constant, 7 therefore depends on a, 3, x, and 7. The exit presure ratio is
also held constant. Under these conditions, the slope of the ¢, versus T curve (8) had
little or no effect on shock strength or position relative to the perfect gas as shown in

figure(4.3).
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For the non-ideal gas, r and r are not really independent parameters and may be

combined into Zy. Figure(4.4) shows the variation in shock strength and position as

functions of Zy and the corresponding perfect gas results with adjusted to preserve the

stagnation enthalpy as above. These plots clearly show that it is not possible to mimic

the effects of the non-ideality by changing v as in the case of the calorically imperfect

gas. The difference in shock strength and position becomes larger and larger as the gas

becomes less ideal.
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Figure 4.4: Shock Strength and Location vs. Z,
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The last test conducted with the one dimensional flow model was to determine the
effects of the various gas models on the upwinding scheme needed for stability of the

numerical scheme. The flow solver drives the momentum equation residual to zero,

_ - i+ pi
Ry = pigiAi(§i — ¢21) + piAi — pi14iq + Psztl(A‘_ - A1) (4.5)

where the upwinded speed is defined as
&= ¢ — (g — gi1) (4.6)
and y; is non-zero only if M; is greater than M.,.

K, M2
Hi(Mi(g:)) = = [1 - F} (4.7)

Initially, the exact v was calculated at each node along with all the necessary lin-

earizations and used in the upwinding scheme. Under these conditions, the flow solver
converged with M. < 1. However, the upwinding is relatively insensitive to the exact
value of y even though the stability analysis used to derive equation(4.7) ignored ¥
perturbations. Using a constant value of ¥ had absolutely no effect on the viable range

for M. or the rate of convergence.

4.2 Two Dimensional Results

The subroutine which appears in Appendix B was incorporated into MSES, the multi-
element version of the two dimensional transonic airfoil design/analysis code ISES [4].
Numerical experiments carried out were limited to single-element inviscid cases to more
clearly demonstrate the effect of the new gas model. Figure(4.5) shows an overlay of the
Mach distributions for a test airfoil run in § Fj at two different stagnation conditions and
in air. All three cases are at matched freestream Mach number and lift coefficient. Note
that they are not at the same angle of attack. The SFy is characterized by stagnation

pressures of latm and 3atm and a stagnation temperature of 310K.

Airfoils tests in heavy gases will be much more worthwile if some relationship may
be found so that the tests reflect the airfoil performance in air. The only parameters
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Figure 4.5: Comparison of Air and § Fs at Fixed M and Ct

which may be adjusted in a wind tunnel test are the Mach number, stagnation con-
ditions, and angle of atttack or Cf. Figure(4.5) shows an attempted match keeping
M and C constant: clearly, this is not an effective technique. After a good deal of
experimentatation, the best match was achieved by running the different gases at the
same M* which is defined as the ratio of freestream velocity to the speed of sound at
sonic conditions. Figure(4.6) shows the case in air from figure(4.5) compared with SF,

(latm and 3atm) at the same M*.

val

-z_arm RARE 2822 (EL 1)

-1.5 Als
— 5Py (1atm)
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...............................................

Figure 4.6: Comparison of SF, at latm and Jatm to Air, M* =.740,C; = .9
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Figure 4.7: Comparison of SFs at latm and 3atm to Air, M* =732, C = .75

A case with a weaker shock, figure(4.7) was used to further verify this relationship.
The match is slightly worse, but this is to be expected because a weak shock is much
more sensitive to small changes in M than a strong one. As an alternative to matching
M*, Anderson [5] proposes matching the small disturbance similarity parameter « and
AC| where

1-M2
t T mnRm e “9
MLy +1)
A = ==/ (49)
1~ MZ
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Co SPy (3atm)
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Figure 4.8: Comparison of SFs at latm and 3atm to Air, k = .439, AC = 2.18
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Chapter 5

Conclusions

The models derived above adequately describe the thermodynamic behavior of non-ideal
and calorically imperfect gases. Despite some minor complications in linearizing these
models, they were implemented in routines suitable for incorporation into existing flow
solvers based on Newton’s method. First, a quasi one-dimensional flow solver was used
to examine the influence of the various non-dimensional parameters which govern the

behavior of the different gases.

Transonic airfoil test cases for air and S Fg were then used to study the influence of
parameters which may be controlled in a wind tunnel experiment: stagnation pressure,
freestream Mach number, and angle of attack. The goal of this study was determine
the conditions under which a wind tunnel test in a heavy gas would produce results
comparable to those found in air. Matching M* and C or x and ACyL were both
effective for the test cases presented here. Further study is necessary to determine

which is best for multi-element cases.

The results are encouraging in that they definitely hint at the possibility of directly
relating heavy gas test data to performance in air. It is first necessary to verify experi-
mentally the model for §Fs, and to investigate the effects of non-ideal gases on viscous

flows.

26

30



Appendix A
Curve Fit For SF; State Equation

A curve fit may be found for the function ¢ (%) for any gas given experimental state
data. With the density (p) measured at a number of different pressures (p) and tem-
peratures (T'), a vector is defined containing the difference between the real gas and a

perfect gas at each data point.

m;hx -1

Z = (A.1)
Pmimq!m -1
Defining 8§ = %, the matrix A contains the state information.
mor P .. 6 _pb p
i=1 S S (A.2)
Pref
Pmbn POl ... PnO% PmOm  Pm

The goal is to find a state equation agreeing closely with the experimental data in 7

but of the simple form:

[ o
P o
Z(p,r)=1+—[c,. Cnoy - Co] X (A.3)
Pret :
1 o
Therefore
2~ 4AC (A.4)
and € is found by the technique of linear regression:
C=(ATA)'4TZ (A.5)

The results presented in this thesis were based on a quadratic fit for ¢ from approximate
data for §Fs. The required data may be found in [6].
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Appendix B
MSES Subroutine for Non-Ideal Gas Model

subroutine hgparm(alfi,btal, taui, cel,ccl,cc2, ho)

Initializes non-ideal gas routines.
Formulation derived in Schafer SM thesis.

Input:
alfl Constants for Cp(T) in caloric equation: Cp = a(1 + bT)
bet1

taul Constant in phi(T) in non-ideality factor Z(p,T)
ccl
cc2 phi = cO0 + ci(tau/T) + c2(tau/T)e*2

Output:
ho Enthalpy at reference conditions po, TO

Internal output:

c
c

c

c

c

c

c

c

c

c

c ccO0 Constants defining phi(T) in Polynomial form:
c

¢

c

c

c

c

c

c z0 Non-ideality factor Z(p0,T0) at reference conditions
c

implicit real*4 (a-h,m,o0-z)
common /nongas/

& alf, bta, pi, tau, z0
common /nonfit/

& c2, ci, ¢c0

¢---- put input parameters into common blocks
alf = alfi1
bta = btal
tau = taui
c0 = cco
cl = cel
c2 = ¢cc2
pi =1.0
c~~-- calculate reference non-ideality factor and enthalpy

zZ0 = 1.0 + pis(c2/tause2 + ci/tan + c0)
ho = (alf+(1. + bta) + pi/tausphid(1./tau)) / z0
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return
end

subroutine nideal(h0,r,q, p ,p_r »P_q,

x msq,msq_r,msq_q)
G e e
c Calculates pressure and Mach number for specified
c stagnation enthalpy, density, and speed.
c
c Input:
c ho stagnation enthalpy
c r density
c q speed
c
c CQutput:
c P pressure
c pP-T dp/dr
c P-q  dp/dq
c msq square of Mach number M-2
c msq_r dM“2/dr
c msq_q dM"2/dq
Cmmmmammm - o
implicit reals*4 (a-h,m,o0-z)
c
c---- set static enthalpy
h = hOo - 0.5%q*»2
h_q = -q
c
C---= set pressure and temperature and derivatives
call ngalpt(h,r,p,p_r,p_h,p_rr.p_hh,p_rh,
& t,t_r,t_h,t_rr,t_hh,t_rh)
P-q = p_hsh_q
c
¢---= set speed of sound squared: a“2 = dp/dr (at constant s)
asq =p.r / (1. - p_h/r)
asq.r = p_rr / (1. - p_h/r)
& = P-r / (1. - p_h/r)**2 +(p_h/r*+2 - p_rh/r)
asq_h = p.rh / (1. - p_h/r)
& +P-r / (1. - p_h/r)**2 sp_hh/r
asq_q = asq_h*h_q
c
¢~--- set Nach number squared
msq = q**2/asq
msq.r = -msq/asq * asq_r
msq.q = -msq/asq * asq_q + 2.%#q/asq
c
return
end

subroutine ngaspt (h,r,p,p_r,p_h,p_rr,p_hh,p_rh,
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4 t,t_r,t_h,t_rr,t_hh,t_rh)

C--"'""'-"-"°“", """""""""""""""""""""
c Calculates pressure and temperature for
c specified static enthalpy and density.
c
c Input:
c h enthalpy
c r density
c
c Output:
c P pressure
< pP_T dp/dr
c P-h dp/dh
c p-rr d-2p/dr-2
c p.hh  d-2p/dh-2
c p-th  d*2p/drdh
c t temperature
c t_r dt/dr ... etc.
e e e e
implicit real*4 (a-h,m,o-z)
dimension a(2,2), ai(2,2), aih(2,2), air(2,2),
& b(2,2), bh(2,2), br(2,2)
common /nongas/
& alf, bta, pi, tau, z0
c
c---- Nevton convergence tolerance
data eps /5.0E-6/
c
¢-=-- initial guess from imperfect ideal gas
if(bta.eq.0.0) then
t = h/alt
else -
t = (-1.0 + sqrt(1.0 + 4.0+btash/alt)) / (2.0+bta)
endif
P = rst
c
c---- Nevton loop to converge on correct P>t
itcon = 15
do 100 iter=1, itcon
c
¢---- set and linearize non-ideality factor Z(p,t)
ttc = 1./(taurt)
tte_t = -1./(taust*s2)
c
Z = 1. + pspisphi(ttc)
zp = pisphi(tte)
z_t = P*pisphid(ttc)sttc_t
c
¢---- residual 1: state equation
resl = p/(rst) -z /20
ri_p = 1./(ret) - 2_p/z0
ri_t = -p/(retes2) -~ z_t/z0
c
c
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tal = (alf=t + alfsbtastss*2) / z0
tmi_p = 0. ‘
tmi_t = (alf + 2.+alfsbtast ) / z0
c
tm2 = p*pi/tau*phid(ttc) / z0
tm2_p = pi/tausphid(ttc) / 20
tm2_t = p*pi/tausphidd(ttc)*ttc_t / zo0
(o4
c---- residual 2: caloric equation
res2 = h - (tml1 + tm2)
r2.p = - (tml_p + tm2_p)
r2_t = - (tmi_t + tm2_t)
c
c---- set Jacobian matrix
a(1,1) =ri_t
a(1,2) =r1_p
a(2,1) =r2_t
a(2,2) =r2p
c
¢---- find inverse Jacobian matrix
detinv = 1.0 / (a(1,1)*a(2,2) - a(1,2)*a(2,1))
ai(1,1) = a(2,2)*detinv
24i(2,2) = a(1,1)*detinv
ai(1,2) = -a(1,2)*detinv
ai(2,1) = -a(2,1)*detinv

¢-~-- set Newton changes

dt = -(ai(1,1)*resi + ai(1,2)*res2)

dp = -(ai(2,1)sres1 + ai(2,2)*res2)
c

rlx = 1.0

if(rlxedp .gt.
if(rlxsdp .1t.
if(rlx=dt .gt.

-6%p) rlx = 2.5+p/dp
.8%p) rlx = -.8+p/dp
.5%t) rlx = 2.5%t/dt

[ I S B ¥

if(rlxsdt .1t. -.8st) rlx = -.8+t/dt
c
c---- update variables

t =t + rlxsdt

P =P + rlxedp
c

¢---- convergence check
it (abs(dp/p) .le. eps .and. abs(dt/t) .le. eps) goto 3

c
100 comntinme
c
vrite(=,s) 'NGASPT: Convergence failed.’
vrite(s,s) ’dp dT :’, dp, dt
write(#,») 'p T h r:’, Ps t, h, r
¢
3 continune
c

¢-=-= set residual derivatives wrt input r,h variables
ri_r = -p/(rs*2st)
ri_h = 0.
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r2_r = 0.
r2_h = 1.
c
b(1,1) =ri_r
b(1,2) =r1_h
b(2,1) =r2_r
b(2,2) =r2_h
C
c---- get p,t derivatives wrt r,h
t_.r = -(ai(1,1)*b(1,1) + ai(1,2)*b(2,1))
t_h = -(ai(1,1)*b(1,2) + ai(1,2)*b(2,2))
p-r = -(ai(2,1)*b(1,1) + ai(2,2)*b(2,1))
p-h = -(ai(2,1)*b(1,2) + ai(2,2)*b(2,2))
c
[~
¢---- set second residual derivatives wrt r,h
ttc = 1./(tau*t)
tte_t = -1./(taustss*2)
tte_tt = 2./(taust==*3)
c
z = 1. + pepisphi(ttc)
zZp = pi*phi(ttc)
z_pt = pi*phid(ttc)sttc_t
z_pp = 0.
z.t = p*pi*phid(ttc)sttc_t
zZ_tt = p*pi*(phidd(ttc)*ttc_t**2 + phid(ttc)*ttc_tt)
c
ri = p/ (r=t) -z /z0
rip = 1./(rst) - z_p /20
ri_pt = -1./(r*te*2) - z_pt/z0
ri_pp = - z_pp/z0
rit = -p/(rstss*2) - z_t /20
Ti_tt = 2.%p/(ret**3) - z_tt/z0
ri.r = -p/(res2st)
ri.h = 0.
ri_hp = 0.
ri_ht = 0.
Ti_rp = -1./(rse2st)
ri_rt = p/ (Tee2stse2)
Ti_rr = 2.%p/(re+3st)
c
tmi s (alfst + alfsbtasts«2) / z0
tal_t = (alf + 2.salfsbtast ) / z0
tmi_st = ( 2.%alfsbta ) / zo0
tai_pt = 0.
teli_p = 0.
tmil pp = 0
c
tm2 = pspi/tausphid(tte) / z0
tm2.p = pi/tausphid(ttc) / 20
tm2_pt = pi/tausphidd(ttc)sttc_t / z0
tn2_pp = 0.
tm2_t = p*pi/taus phidd(ttc)sttc_t / 20
tm2_tt = pspi/taur(phiddd(ttc)sttc_te*2 +
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& phidd(tte)*ttc_tt) / z0

r2 =h - (tmg + tm2)
r2_p - (tm1_p + tm2_p)

r2_t = - (tmi_t + tm2_t)
r2_h = 1.
c
c
c---- set and linearize new residuals: rih = dr1/dh = 0, r2h = dr2/dh = 0
ph = p_h
th = t_h
c
rih =ri_p *ph + r1_t sth + r1_h
rih_ph = ri_p
rih_th = ri_t

rih_p = ri_ppsph + ri_ptsth + ri_hp
rih_t = ri_ptsph + ri_tt*th + ri_ht

rith.h = 0.
rih_r = -ph/(r*#2¢t) + thep/(r*s2st**2)
c
[+
r2h = 1. - tml_t*th - tmi_p*ph - tm2_tsth - tm2_p+*ph
r2h_ph = - tmi_p - tm2_p
r2h_th = - tmi_t - tm2_t
r2h p = - tml_pt*th - tmi_pp*ph - tm2_pt*th - tm2_pp*ph
r2h_t = - tml_tt*th - tml_pt*ph - tm2_ttsth - tm2_pteph
r2h_h = 0.
r2h_r = 0.
[+
a(1,1) = rih_th
a(1,2) = rih_ph
a(2,1) = r2n_th
a(2,2) = r2h_ph
C
detinv = 1.0 / (a(1,1)*a(2,2) - a(1,2)*a(2,1))
aih(1,1) = a(2,2)*detinv
aih(2,2) = a(1,1)sdetinv
aih(1,2) = -a(1,2)*detinv
aih(2,1) = -a(2,1)*detinv
c
dth = -(aih(1,1)srih + aih(1,2)*r2h)
dph = -(aih(2,1)*r1h + aih(2,2)*r2h)
c
¢ Ph = ph + dph
c th = th + dth
c
c
c¢---- set and linearize new residuals: rir = dri/dr = 0, r2r = dr2/dr = 0
Pr = p_r
tr = t_r
c
rir =ri pepr + ri_t *tr + ri_r
rir_pr = r1_p
rir_tr = ri_t
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Cm===

Cmm——

rir_p T1_pp*pr + ri_ptstr + ri_rp

rir_t rl_ptspr + ri_tt*tr + ri_rt

Tir.r = ri_rpspr + ri_rt*tr + ri_rr

rir.h = 0.

rar = - tmi_t *tr - tmi_p *pr - tm2_t »tr - tm2_p «pr
r2r_pr = - tml_p - tm2_p
r2r_tr = - tmi_t - tm2_t

T2r_p = - tml_ptstr - tml_pp*pr - tm2_ptstr - tm2_pp*pr
I2r.t = - tml_tt*tr - tml_ptspr - tm2_ttstr - tm2_pt*pr
r2r_h =

r2r r = 0.

a(1,1) = rir_tr

a(1,2) = rir_pr

a(2,1) = r2r_tr

a(2,2) = r2r_pr

detinv = 1.0 / (a(1,1)*a(2,2) - a(1,2)*a(2,1))
air(1,1) = a(2,2)*detinv

air(2,2) = a(1,1)*detinv

air(1,2) = -a(1,2)*detinv

air(2,1) = -a(2,1)*detinv

dtr = -(air(1,1)*rir + air(1,2)sr2r)
dpr = -(air(2,1)srir + air(2,2)*r2r)
PT = pr + dpr

tr = tr + dtr

calculate responses in dt/dh.and dp/dh to unit h perturbation

drih = rih_h + rih_p*ph + rih_t*th
dr2h = r2h_h + r2h_psph + r2h_t#th
drir = rir_h + rir_psph + rir_tsth
dr2r = r2r_h + r2r_psph + r2r_tsth

dth = -(aih(1,1)*drih + aih(1,2)*dr2h)

dph = -(aih(2,1)*drih + aih(2,2)+dr2h)
thh = dth
Phh = dph
dth = -(air(1,1)edrir + air(1,2)*dr2r)
dph = -(air(2,1)*drir + air(2,2)*dr2r)
thr = dth
pPhr = dph

calculate responses in dt/dh and dp/dh to unit r perturbation
drih = rih_r + rih_pspr + rih_tetr
dr2h = r2h_r + r2h_pepr + r2h_tetr
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drir = rir_r + Tir_p*pr + rir_tstr
dr2r = r2r_r + I2r_pepr + r2r_tstr

dth = -(aih(1,1)#drth + aih(1,2)*dr2h)
dph = -(aih(2,1)edrih + aih(2,2)#*dr2h)
trh = dth
prh = dph

dth = -(air(1,1)+drir + air(1,2)sdr2r)
dph = -(air(2,1)sdrir + air(2,2)sdr2r)

trr = dth
pPrr = dph
c
¢---- set final first and second derivatives wrt (r,h)
P.r =pr
t_r = tr
P-h = ph
t_h = th
P-hh = phh
t_hh = thh
pP-IT = prr
t_rr = trr
P.rh = .5*(prh+phr)
t_rth = .5«(trh+thr)
c
return
end

subroutine nonstag(ho,rho,q, pPo,p0_r,p0_q,

& r0,r0_r,r0_q )
c
c Calculates stagnation pPressure and density for
c specified stagnation enthalpy, density, and speed.
c
< Input:
¢ ho stagnation enthalpy
c rho density
c q speed
c
c Cutput:
c po stagnation pressure
c po_r dp0/dr
c PO_q  dp0/aq
< 0 stagnation density
c ro_r dro0/dr
c r0_q dx0/dq
c

implicit reals4 (a-h,m,o-z)

dimension a(2,2), ai(2,2), b(2,2)

real*4 h p,h_t
[
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&

common /nongas/

alf, bta, pi, tau, z0
common /nonfit/

c2, c1, c0

data eps /5.0E-8/

z(pp,tt) = 1. + pp*pi*phi (1./(tau*tt))
z_p(pp,tt) = pi*phi (1./(taustt))
z_t(pp,tt) = pp*pi*phid(1./(taustt)) / (-taustte*2)
c
h = ho - .5eqss2
hq = - q
cce h_h0 = 1.0
c
r = rho
c
¢---- set input pressure and temperature and derivatives
call ngaspt(h,r,p,p_r,p_h,p_rr,p_hh,p_rh,
& t,t_r,t_h,t_rr,t_hh,t_rh)
c
¢---- set entropy s and derivatives wrt p,t
ttc = 1./(taust)
ttc_t = -1./(tauste=2)
tte_tt = 2./(taustss3)
c
ph = phi(tte)
phd = phid(tte)
phdd = phidd(ttc)
phddd = phiddd(ttc)
c
ph_t =phd = ttc_t
phd_t = phdd = ttc_t
phdd_t = phddd * ttc_t
c
8 = alfelog(t) + 2.0+alf*btast
& - p*pi*( tephd sttc_t + ph ) - log(p)
s_.p = - pi*( tsphd sttc.t + ph ) - 1.0/p
s_t = alt/¢ + 2.0%alfsbta
& - p*pis( phd sttc_t + ph_t
& + tophd_tsttc_t
& + tephd sttc_tt )
c
c---- initial guess for p0,t0 from imperfect gas
cc it(bta.eq.0.0) then
cc t0 = ho/alf
cc else
cc t0 = (-1.0 + sqrt(1.0 + 4.0sbtash0/alf)) / (2.0sbta)
cc endif
ce PO = p * exp(-alfslog(t) + alf*2.0sbtas(1.0-t))

[

t0 = ¢t
PO =p
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c---- Newton loop to converge on correct po,to0
itcon = 1§
do 100 iter=1, itcon

ttc = 1./(taust0)
tte_t0 = -1./(taust0s=2)
ttc_tt0 = 2./(taustO==3)
c
.ph = phi(ttc)
phd = phid(tte)
phdd = phidd(ttc)
phddd = phiddd(ttc)
c
ph_t0 = phd = ttc_to
phd_t0 = phdd =* ttc_to0
phdd_t0 = phddd * ttc_t0
c
c---- enthalpy residual
resl = (alf*(t0 + btastOs+2) + pO*pi/tausphd )/z0
r1_p0 = ( pi/tausphd )/z0
r1_t0 = (alf+*(1.0+ btast0*2.) + PO*pi/tausphd_t0)/z0
c
¢-~-- entropy residual
Tes2 = alfslog(t0) + 2.0salfsbta*to
& - pO*pis*( tOsphd sttc_t0 + ph ) - log(po)
T2 p0 = - pis( tOsphd sttc_t0 + ph ) -1.0/p0
r2_t0 = alf/t0 + 2.0%alfsbta
[ - pO*pis( phd  sttc_t0 + ph_to
& + tO*phd_tO»ttc_to0
& + tOsphd *ttc_tt0 )
c
C---- setup and invert Jacobian matrix
a(1,1) = r1_to
a(1,2) = r1_po
a(2,1) = r2_to0
a(2,2) = r2_po
c
detinv = 1.0 / (a(1,1)*a(2,2) - a(1,2)*a(2,1))
ai(1,1) = a(2,2)sdetinv
2i(2,2) = a(1,1)sdetinv
ai(1,2) = -a(1,2)sdetinv
ai(2,1) = -a(2,1)*detinv
c
¢---- set Newton variables

dt = -(ai(1,1)srest + ai(1,2)*res2)
dp = -(ai(2,1)*res1 + ai(2,2)%res2)

rlx = 1.0
if(rlxedp .gt. 2.5+p0) rlx = 2.5%p0/dp
1£(rlxsdp .1t. -.8+p0) rlx = -.8p0/dp
if(rlxsdt .gt. 2.5#t0) rlx = 2.5+t0/dt
if(rlxedt .1t. -.8st0) rix = ~.8+t0/d¢
c
¢---- update variables
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Cm——-

100

Cum——

Cm———

cce

cce

C=m=———

Cm———

C=———

cce

PO
t0

po
t0

+ rlxsdp
+ rlx=dt

convergence check

if(abs(dp/p0) .le. eps .and. abs(dt/t0) .1le. eps) go to 2

continue

write(s
Write(=

»*) ’NONSTAG: Convergence failure.’
,*) 'dp dT :’,dp, dt

write(s,*) 'po To h r:’,p0,t0,h,r
continue

set residual derivatives wrt (s,h0)

ri_s = 0.

r2_s = -1.0

ri_h = -1.0

r2_h = 0.

b(1,1) = ri_s

b(1,2) =1ri_h

b(2,1) = r2_s

b(2,2) =1r2_h

set (t0,p0) derivatives wrt (s,ho)

to_s = -(ai(1,1)sb(1,1) + ai(1,2)+b(2,1))
tO_ho = -(ai(1,1)*b(1,2) + ai(1,2)*b(2,2))
PO_s = -(ai(2,1)*b(1,1) + ai(2,2)*b(2,1))
PO_h0 = -(ai(2,1)*b(1,2) + ai(2,2)sb(2,2))
convert derivatives wrt (s,h0) to wrt (p,t,h0)
t0_t = tO_s*s_t

tO_p = tO_s*s_p

PO_t = pO_s*s_t

PO_p = pO_s#*s_p

set stagnation density r0 and derivatives wrt (po,t0)

zz
zz_p
zz_t

ro =
r0o_z

r0_p0 =
r0_t0 =

convert
o p =
ro_t =
r0_ho =

z(p0,t0)
z_p(p0,t0)
z_t(po,t0)

20/2z * p0/t0
-20/zz**2 *+ po/to

r0_zszz_p + z0/(zz*t0)
TO_z*zz_t - ZO*pO/(zz*t0*s2)

derivatives from wrt (p0,t0) to wrt (p,t,h0)
r0_pO*p0_p + T0_t0*t0_p
r0_pOsp0_t + r0_t0»t0_t
r0_p0*p0_hO + r0_t0st0_ho
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¢---- convert derivatives from wrt (p,t) to wrt (r,q,h0)
ro_r = TO_p*p_r + r0_tst_r
r0_q = (ro_ptp_h + r0_t*t_h)sh_q
pPo_r = PO_p*p_r + po_t*t_r

P0_q = (pPO_p*p_h + pO_t*t_h)sh_q
c
ccc  r0_h0 = (rO_psp_h + rO_tst_h)sh_h0 + rO_ho
ccc  pO_h0 = (pO_p*p_h + p0O_t*t_h)*h_h0 + pO_ho
c
return
end
real*4 function phi(ttc)
implicit real*4(a-h,m,o0-2z)
R T
c Returns function phi used in non-ideality parameter
c Z =1 + pisphi(ttc)
P
common /nonfit/
4 c2, ci, c0
c
Phi = c2sttce*+2 + cli*ttc + c0
c
return
end
Treal*4 function phid(ttc)
implicit real*4(a-h,m,o0-z)
common /nonfit/
& c2, c1, co
c
phid = 2.%c2%ttc + ci
c
return
end
Teal*4 function phidd(ttc)
implicit reals4(a-h,m,o0-2)
common /nonfit/
& c2, ¢1, ¢0
c
phidd = 2.#c2
c
return
end
Teals4 function phiddd(ttc)
implicit real*4(a-h,m,o0-z)
common /nonfit/
& c2, ¢c1, ¢c0
c

39



phiddd = o.

c
return
end
subroutine hgent(ho,r,q, s)
G e e e
c Returns entropy s from input variables ho,r,q
G e o
common /nongas/
& alf, bta, pi, tau, 20
common /nonfit/
f 4 c2, ci1, ¢0
[+
h = hO - .5#qs=*2
c
¢---- set input pressure and temperature and derivatives
call ngalpt(h,r,p,p_r,p_h,p_rr,p_hh,p_rh,
& t,t_r,t_h,t_rr,t_hh,t_rh)
c
ttc = 1./(tau*t)
tte_t = -1./(taust*»2)
c
ph = phi(ttc)
phd = phid(ttc)
c
s = alf*log(t) + 2.0%alfsbtast
& - P*pi*(tephdsttc_t + ph) - log(p)
c
Teturn
end
subroutine nongamv(ho,r,q, ganm,gam_r,gam_q)
c-
c Returns "equivalent" gamma for BL density profile
c
common /nongas/
& alf, bta, pi, tau, z0
common /nonfit/
& c2, c1, c0
c

c---- set static enthalpy
h hO - 0.5sqes2

h_q -q

c
C~=-- set pressure and temperature and derivatives
call ngaspt(h,r,p,p_r,p_h,p_rr,p_hh,p_rh,
& t,t_r,t_h,t_rr,t_hh,t_rh)
c
G-—-- set speed of sound squared: a“2 = dp/dr (at constant s)
asq =pr / (1. - p_h/r)

40



[¢]

asq.Tr = p_.rr / (1. - p_h/r)

& " P-r / (1. - p_h/r)**2 s(p_h/rss2 - P_rh/r)
asq_h = p_rh / (1. - p_h/x)

F 4 +*+P.r / (1. - p_h/r)=2 *p_hh/r
tte = 1./(taust)
tte_t = -1./(taustss2)
ttc_tt = 2./(tauste=3)
ph = phi(ttc)
phd = phid(ttc)
phdd = phidd(ttc)
phddd = phiddd(ttc)

z = 1. + p*pisph

zZp-= pisph

z .t = P*pi*phd*ttc_t

P = ( alf*(1.0 + 2.0«btast)

& + p*pi/tau* phddsttc_t ) / z0
cp_p = ( pi/taus phddsttc_t ) / z0
cp_t = ( alfs( 2.0%bta )

& + p*pi/tau*(phdddettc_t*s2 + phddsttc_tt) ) / zo0
zet = h/(cp*t)*(1.0 - P*pi/(tstau)*phd/z) * z0
zet_h = 1.0/(cp*t)*(1.0 - p*pi/(t*tau)*phd/z) * z0
Zet_p = h/(cpst)s*( - pi/(tstau)*phd/z

4 = P*pi/(t*tau)sphd/z*(-z_p/z)) * z0

& - (zet/cp)*cp_p
Zet_t = h/(cpet)( = P*Pi/(t*tau)sphd/z*(-z_t/z - 1.0/t)

& - p*pi/(t*tau)*phddettc_t/z ) * zo

& - (zet/cp)scp_t - (zet/t )
gam = asq/(h*zet) + 1.0
gam_r = asq_r/(h*zet)
gam_h = asq/(h*zet)*(-zet_h/zet - 1.0/h) + asq_h/(hszet)
gan_p = asq/(hezet)*(~zet_p/zet)
gam_t = asq/(h*zet)*(-zet_t/zet)

gan_h = gam p*p_h + gam_t*t_h + gam_h
EAR_T = gGam_p*pP_r + gam_t*t_r + gam_r

gam_q = gam_hsh_q
return

end

subroutine sonic(h0,po,r0, q,p,r)

calculates sonic quantities q,p,r
from specified sonic quantities ho,p0,ro0
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Cc—-- -

implicit real (m)
data eps / 1.0e-5 /

C
c---- initialize with perfect gas
gam = r0*h0 / (r0*h0 - po)
gml = gam - 1.0
c
q = 8qrt(2.0*h0/(2.0/gm1 + 1.0))
c
trat = 1.0 + 0.5%gm1
P = pO*trats*(-gam/gm1)
r = roxtrats=(-1.0/gm1)
c
€=--- converge on non-ideal values by forcing M"2 = 1, and pstag = po
do 10 iters=1, 1§
call nideal(ho,r,q, p ,p_r ,p_q,
& nsq,msq_r,msq_q )
call nonstag(hO,r,q, pstag,pstag_r,pstag_q,
& rstag,rstag_r,rstag q )
resl = msq - 1.0
all = msq_r
al2 = msq._q
c
res2 = pstag - po0
a21 = pstag_r
a22 = pstag_q
c
detinv = 1.0/(a11*a22 - a12+a2i)
dr = -(resi*a22 -~ a12 sres2)sdetinv
. dq = -(aill *res2 - resi*a2l )#detinv
c
dp = p_redr + p_q*dq
c
rlx = 1.0
if(rlxedr .gt. 1.6%r) rlx = 1.5#r/dr
if(rlxedr .1t. -.8+r) rlx = -.68#r/dr
if(rlxsdq .gt. 1.5¢q) rix = 1.5*q/dq
if(rlxsdq .1t. -.6#q) rix = -.6*q/dq
c
r = r + rlxsdr
q = q + rlxedq
P = P + rlxsdp
c
dmax = amaxi( abs(dr)/r , abs(dq)/q )
c
if(dmax .1t. eps) go to 11
c

10 continue
write(s,s) ’gonic: convergence failed. dmax =’, dmax
11 continue

return
end ! sonic
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Appendix B
High-Order Airfoil Farfield Boundary Conditions
for Ideal and Non-Ideal Gas Flows

The steady flow around an airfoil away from shock wakes and viscous regions has constant
entropy and total enthalpy, and hence is also irrotational. These properties hold whether the fluid
is an ideal or a non-ideal gas. The flow can then still be decribed by the velocity potential ¢ or
the perturbation potential ¢. Assuming the freestream is aligned with the z-axis, the following

relations are obtained.

¢ = qw(z+¢) (1)
Ve=¢ = qu[(1+¢:)i+ ¢,j] (2)
?=1d? = & [(1+e:) + 6] (3)

%V(q’) = qVq = L[ ($z2 + bz boz + Pybzy)i
+(Pey + G2 oy + y¢yy)j ] (4)

The governing flow equation is:

V. (pVE) = 0 (5)
or vie = —% -V (6)

In isentropic flow (s = constant), p = p(p), so

_ dp _
and hence
1
vie = = qVq-Ve (8)
a?V3i¢ = qVq-[(1+¢:)i + &y]] (9)

where a is the speed of sound. In isentropic, adiabatic flow, the speed of sound is uniquely related
to the speed: a = a(q). For a perfect gas, a(q) is given by

2 _ 2 _ Y-l
while for an imperfect and/or non-ideal gas it is necessary here to linearize a(g) about the freestream
conditions.
d(al)
2 2 o 2 _ 2
a® ~ a_ + q° - q., 11
a2, ) ()
It is convenient to define an “equivalent” ratio of specific heats v’ for the non-ideal gas as
d(a)
yo= 1-25"= (12)
d(gZ) |,
8



so that the a(q) relation for the non-ideal gas can be compactly written as

@~ ol - T gl) (13)

]

For a perfect gas, this reverts to the exact form (10) since in this case 9’ = 4. It is interesting

to note that ¥’ can easily be less than unity for heavy gases such as sulfur hexafluoride, while

invariably ¥ > 1 for perfect gases.

Substituting for a?, ¢2, and qVgq in equation (9), we obtain

[ai - 7'2—'1qi (262 + 62 + ¢§)} [bee + 6] = G U1+ 02) (Gne + 62 boz + by82y)
+ d’y (¢zy + d’z d’zy + ¢y¢w)] (14)

[1_ iz z¢,] (Bes + b45] = M2 [feo + 262 bz + 28482] + O () (15)

(1= M2)bos + 0y = MLI(Y+1)¢2taz + (1'-1)02tyy + 26y82,] + O (¢°) (16)

where M, = q,/a,, is the freestream Mach number.

Equation (16) is the 2D second-order Prandtl-Glauert equation which governs small-perturbation
non-ideal compressible potential flows. It has the same form as the equation for a perfect ideal gas
as derived in references [4] and [5], except that the usual ratio of specific heats v is replaced by
the “equivalent” value v’ defined by equation (12). Wagner and Schmidt [1] have considered the

first-order version of equation (16) using 7' in lieu of v.

In terms of the Prandtl-Glauert coordinates

: = 2/p (17)
y =y (18)
-2 — 52+g2 (19)
0 = a.rctan% (20)
where 3 = /1 — M2, the general solution to equation (16) is
-T .
¢ = —2-1';0 + 2—1rlnr
D, cos@ D, siné
+ — ——
2r 7 2r T
TM_\%[ InF¥ cos 360
+ ( ) {kr‘:——kz = } (21)
27 T T
where 1 1 3 1 1 1
7l+ _71 7'+ 7'...
= = =7 = — | =+ —=). 22
ky 4(5s+g) ka 16<B3+ﬂ) (22)

Terms of order 1/7? and above have been discarded.



In a flow solver, the circulation I' can be determined either directly from the lift per unit span

L' (Euler or Navier-Stokes code),
Ll
r = — (23)
Pty

or indirectly by specifying a Kutta condition (potential solver or MSES). The source strength &

can be determined from the total profile drag per unit span D', or from the asymptotic mass defect
behind the airfoil including the shock wake.

DI

% =
Pwql,

(24)

In the case of a potential solver, D’ should not include the wave drag since there is no shock wake
(unless an entropy correction scheme is employed). Note that I' and ¥ here have units of length

since ¢ in (1) corresponds to a unit freestream speed.

Cole and Cook [5] give explicit expressions for the doublet coefficients D, and D, in terms of
field integrals over the domain. Unfortunately, these expressions are unwieldy and for a non-ideal
gas would be rather expensive. A simpler and economical approach is to iteratively update D, and
D, by minimizing the mismatch between V& and the velocity §iolution from the flow solver on the

outer boundary. The approach taken in reference (4], for example, is to minimize the integral
1 "
I=3 / V% X Guolution]? dz (25)

taken over the outermost streamlines. The doublet terms in the farfield expansion (21) decay
faster than the others, and so can be neglected for sufficiently distant outer boundaries. However,
retaining them greatly reduces the sensitivity of the solution to domain size, especially for transonic
flows [6].

With its term coefficients defined, equation (21) gives a very accurate representation of the
perturbation potential ¢ away from the airfoil. The gradient of equation (21) accurately gives
the total velocity ¢’ via relation (2). Either ¢, ¢, or an appropriate derived quantity may then be
imposed at the outer domain boundary as a high-order boundary condition. A potential solver
would typically impose ¢ or d¢/0n, whereas an Euler or Navier-Stokes solver would typically
impose the flow angle at the inflow and pressure at the outflow, both being determined from V.
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Appendix C
Shape Parameter Relations
for Ideal and Non-Ideal Gas Flows

The major influence of compressibility on boundary layer behavior is a non-uniform density
profile, which alters the layer’s response to pressure gradients. In an integral scheme for adiabatic
flows, this effect is mostly captured by the correlation between shape parameter H, the kinematic

shape parameter Hj, and the edge Mach number M,. The shape parameters are defined as

J(1 - RU)dy _ JA-U)dy
H = =z T/
T(L=U)RU dy F = TS0 dy (26)
where U(y) and R(y) are the velocity and density profiles.
U = il - L (27)

U, Pe

Since the velocity profile U(y) and hence H}, are only weakly affected by compressibility, reduction
of the density profile R(y) near the wall due to adiabatic heating will increase H as can be seen
from its definition (26). In turn, the von-Karman integral momentum equation

T Y

dz 2 u, dz (28)

shows that an increase in H will increase the momentum thickness growth rate dd/dz for a given
adverse pressure gradient. The integral boundary layer formulation in MSES (and its precursor
ISES [4]) employs a correlation of the form Hy(H, M,) for air. This is re-derived for the non-ideal

gas model as follows.

As developed in Appendix A, the state equation of a non-ideal gas can be written as

=7 = 2m7) (29)

while the corresponding caloric equation in differential form is
dh = &(7)dT + d[pF(T)] ~ &(T)dT + pF'(1)dT = cp(p,T)dT (30)

where the approximation is made on the basis that dp ~ 0 across a boundary layer. Linearizing

the caloric equation across the boundary layer we have

h—h, = ¢(T-T.) (31)
~ (% - 1) c:‘Te (32)
The non-ideality factor Z for most non-ideal gases has the form
2(p,7) = 1+ - 4(re/1) (33)
11
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where p. and T, are the critical pressure and temperature. This can likewise be linearized about

the edge conditions as follows.

Z -

N
I

e . T.
ee(7-1) (34
pe I (T. e
- rr(7-9)% (3%)
Combining this with equation (32), we have

Z, _ l__pe T, (he_l) he ¢£
z pc T.\ h T 2.

N N

(36)
Using the equation of state (29), the density profile is then related to the T and Z profiles as

R =

L P
Pe p

N S NS
N[N N[N

(37)

with the usual boundary layer approximation p >~ p, being made. Using relations (32) and (36),
the density profile can be written in terms of the enthalpy profile alone.

_ he he DPe Tc hc he ¢L
o= [1 +(5-1) cp.Te} [1 AR T, z_] (38)
— he he pe T ¢,> 2
= 1+ (—h— - 1) T (1 ~77)+° [(h,/h- 1) ] (39)
R ~ 1+(%—1)c (40)
where " T 4
= e (1 _ Pelc®
¢ = oL (1 P 1. z,) ()

For turbulent adiabatic boundary layer flows, it is reasonable to assume a constant stagnation
enthalpy across the layer, although this is strictly true only for a turbulent Prandtl number of
unity. Since the turbulent diffusion mechanisms of momentum and heat are essentially the same
in a gas (convection by eddies), turbulent Prandtl numbers are typically close to unity. Hence,
the assumption of constant stagnation enthalpy is reasonable. With hy denoting the stagnation

enthalpy, the velocity and static enthalpy profiles are then related by

Y]
he ho — u?/2 1 - 5
- = e = 42
h ho — u2/2 1_5'%(12 (42)
2
2 (U2 -1
he 1 _ Ll (43)
h 1 - 7“;;_ U?
and the density and velocity profiles are then related by
u?
R=1+— _(p2_1c. (44)
-
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Since u?/hg and ( are both functions of the edge Mach number M,, the density profile (44)
implicitly defines Hj in terms of H and M.. To obtain this relation in closed form, it is necessary

to assume a small-defect profile
U=1-¢ ; ek 1 (45)

so that the density profile can be approximated by

u?

R = 1+ I"L—{‘,(—k)c + O(e?) (46)
)
R = 1 - (7,-1)M?e¢ (47)

with the convenient “viscous” equivalent ratio of specific heats v, defined by

u?

_1 7
T Me2 ¢ = ouz

2 1_771%

o= 1+

a? 1
ho — uZ/2¢
with a. being the speed of sound at the boundary layer edge.

The shape parameter H now becomes

g - JU-[1-(n-1)M2e](1-¢)} dy
J{e[l = (1-1)M2€](1-€)} dy
Jedy + (7,-1)M? [¢(1 — €) dy

Je(l ~€)dy — (1,-1)M2 [e2(1 - €) dy

lefe_‘%@ + (-1)MZ + O()
~ He + (1.-1)M? (50)

The required shape parameter correlation is therefore
H, = H - (y,-1)MZ (51)

In the limiting case of a perfect gas, v, = 7. For v = 1.4 (air), MSES presently uses Whitfield’s

correlation [7] in this case is

H - 0.29M?
He 1+ 0.113M2 (52)
= H - 0.4M? + O(M}) (53)

which is seen to be consistent with the more general non-ideal gas result (51). Whitfield’s particular
form (52), however, is reportedly more accurate for Prandtl numbers somewhat less than unity

13



where the total enthalpy profile is not quite uniform as was assumed here. It is therefore appropriate
to put correlation (51) into Whitfield’s form, while also incorporating the Prandtl number. The

final shape parameter correlation is

H - Pr(7v‘1)Mc2

Hi(H,M.) = 1 + (1-Pr)(y,-1)M2

(54)

which reduces to Whitfield’s form for 74, = 1.4, { = 1, and Pr = 0.7, and to the non-ideal gas form

(51) for Pr = 1 which was assumed in its derivation.

It noteworthy that for most heavy gases v,-1 is considerably smaller than for air. For S Fs with
stagnation conditions at STP and M, = 1, for example, 7,-1 = 0.17 for SFs and v,-1 = v-1=10.4
for air. Hence, the influence of M, in SF is smaller, and H values near a shock in S Fg will be
smaller than those in air. The smaller H values in turn reduce the boundary layer’s response to
adverse pressure gradients as discussed above. The airfoil will therefore be more resistant to Mach

drag-divergence in S Fg than in air.

For simplicity, the implementation of the shape parameter correlation (54) in MSES assumes
that v, is constant, being evaluated from (49) at sonic edge conditions: a, = u, = a* s, M, = 1.
Given the degree of approximation used in deriving (54), it is felt that neglecting the already weak
dependence of ¥, on u, is justified. Freezing v, at the sonic conditions is judged appropriate since

its effect on H becomes significant only for M, close to unity.
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